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One-Sentence Summary. We derive the Schrédinger equation and the emer-
gence of Planck’s constant as the narrow-band limit of classical Maxwell wave
dynamics on a toroidal standing mode.

Abstract. Maxwell’s equations for electromagnetism in source-free vacuum
predict discrete energies when an electromagnetic field forms a self-confined
toroidal standing pattern. For any component F'(r,t) of the electromagnetic fields
E, B, we isolate the forward-time spectral part, keep all derivative terms exactly,
and obtain —within a rigorously bounded, bandwidth-squared remainder— the
Schrodinger equation. Planck’s constant and the inertial mass thus emerge not as
fundamental constants, but as geometric properties of the fundamental toroidal
mode (En,wn).
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1. Introduction

Quantum mechanics is usually introduced axiomatically. Maxwell’s equations, in
contrast, were distilled from experiment—Coulomb’s law, Faraday’s induction,
Ampere-@rsted magnetism, and Hertz’s verification of electromagnetic waves.

Uniting these experimentally grounded field laws with quantum theory shows
that the Schrédinger equation follows from classical electromagnetism alone. In
this framework, mass is treated as an electromagnetic object with field structure.
Using the well-known relation E = mc?, an electromagnetic account of inertia
naturally extends to the broader principle that energy attracts energy.

2. Maxwell Wave Equation

For any Cartesian component F(r,t) of E or B in vacuum, the governing equation
is:

<v2 - 01283) F(r,t)=0 (1)

3. Toroidal Standing Modes

We consider a self-confined electromagnetic mode with toroidal topology. Let
the major and minor radii be R and r. Integer windings (ni,ns) impose the
resonance conditions:

ke =—, K*=ki+ki,  wpn,=ck
The energy of a mode is given by:

_En
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En1n2 = hg Wnings h

This produces the energy ladder E,, = F11/ n? for symmetric windings n; =
ne = n, recovering the Rydberg series structure purely from classical cavity
harmonics.



4. Exact Derivation via Analytic Signal

4.1. Forward-Time Spectral Projection

We define the analytic (positive-time) signal:

FH) (e t) = / F(r,w)e ™! dw
0

which also satisfies Eq. (1). We extract the carrier frequency at the fundamental
mode wi:

(r,t) = et FH (r ) 3)

Here, 9 represents the slowly varying envelope of the field.

4.2. Substitution and Exact Algebra
Insert the derivatives of ¢ into Eq. (1) and divide by e~ %11t
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Because wq1 = ckq1, the term %1/) cancels with the spatial Laplacian contribu-
tion k%1, leaving an exact equation with a first-order time derivative.

4.3. Bandwidth Control
Rearranging Eq. (4) yields:

0 = (G Of ()

2w11 2112

For a mode with root-mean-square spectral width Aw, the second derivative
term obeys:

4.4. Emergent h and m

2w1102 th 2 ||1/JH = 0(62)v e=—<K 1 (6)

We identify the emergent constants from the geometry of the fundamental mode:

Eqq Erq
h= 1 — 7
o Tz (7)



Substituting these into the coefficient ¢?/(2w11) gives A/(2m). Discarding the
O(€?) term yields the Schrodinger Equation:

2
ihop) = —;—mv% +O(é?) (8)

5. Equivalent Derivations

The robustness of this result is confirmed via three alternative routes: 1. Oper-
ator Factorization: Factoring the wave operator and expanding about wq;. 2.
Multiple-Scale Expansion: Introducing slow time T = et; matching orders
reproduces Eq. (8). 3. Poynting Vector Averaging: Narrow-band averaging
of the energy flow yields the probability current.

All routes rely on the same bandwidth parameter € and yield identical definitions
for h and m.

6. Discussion

e Rigor: Only the controlled O(€?) term is dropped. This term represents
the “Causal History” or high-frequency carrier information lost in the
Schrédinger approximation.

e Emergent Constants: i and m are not arbitrary; they arise from the
energy and geometry of a single classical mode.

o Testable Corrections: Deviations from Schrédinger dynamics scale as €
and are potentially measurable in high-@Q cavities with tunable bandwidth.
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7. Conclusion

A doubly periodic electromagnetic mode, governed solely by Maxwell’s vacuum
equations, contains the Schrédinger dynamics of a quantum object once its
narrow-band envelope is isolated. Classical electrodynamics therefore supplies
the formal and numerical content usually attributed to quantum postulates.

7.0.1. Appendix A: Carrier Extraction and Degeneracy
Carrier Extraction
The process of “extracting the carrier” is formally equivalent to demodulation.

¢ Frequency Domain: The positive spectrum is shifted left by wi; the
peak now sits at w = 0.

o Time Domain: The fast factor e~*11¢ is removed; 1) is the slowly varying
envelope.



¢ Condition: The Schrédinger limit is valid strictly when Aw/wq1 < 1.

7.0.1.1. Degeneracy at Level F; = Ey/4

o Geometric Modes: 4 states (integer pairs satisfying n? + n3 = 4).

« Chirality: 2 states (Positive vs Negative carrier, F(+) /F(-)).

o Total: 4 x 2 = 8 states. Projecting onto F(*) alone leaves the usual
n? = 4 degeneracy; keeping both analytic branches doubles it, accounting
for spin-like multiplicity.
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