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One-Sentence Summary. We derive the Schrödinger equation and the emer-
gence of Planck’s constant as the narrow-band limit of classical Maxwell wave
dynamics on a toroidal standing mode.

Abstract. Maxwell’s equations for electromagnetism in source-free vacuum
predict discrete energies when an electromagnetic field forms a self-confined
toroidal standing pattern. For any component F (r, t) of the electromagnetic fields
E,B, we isolate the forward-time spectral part, keep all derivative terms exactly,
and obtain —within a rigorously bounded, bandwidth-squared remainder— the
Schrödinger equation. Planck’s constant and the inertial mass thus emerge not as
fundamental constants, but as geometric properties of the fundamental toroidal
mode (E11, ω11).
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1. Introduction
Quantum mechanics is usually introduced axiomatically. Maxwell’s equations, in
contrast, were distilled from experiment—Coulomb’s law, Faraday’s induction,
Ampère–Ørsted magnetism, and Hertz’s verification of electromagnetic waves.

Uniting these experimentally grounded field laws with quantum theory shows
that the Schrödinger equation follows from classical electromagnetism alone. In
this framework, mass is treated as an electromagnetic object with field structure.
Using the well-known relation E = mc2, an electromagnetic account of inertia
naturally extends to the broader principle that energy attracts energy.

2. Maxwell Wave Equation
For any Cartesian component F (r, t) of E or B in vacuum, the governing equation
is:

(
∇2 − 1

c2 ∂
2
t

)
F (r, t) = 0 (1)

3. Toroidal Standing Modes
We consider a self-confined electromagnetic mode with toroidal topology. Let
the major and minor radii be R and r. Integer windings (n1, n2) impose the
resonance conditions:

k1 = n1

R
, k2 = n2

r
, k2 = k2

1 + k2
2, ωn1n2 = ck

The energy of a mode is given by:

En1n2 = ℏg ωn1n2 , ℏg = E11

ω11
(2)

This produces the energy ladder En = E11/n
2 for symmetric windings n1 =

n2 = n, recovering the Rydberg series structure purely from classical cavity
harmonics.
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4. Exact Derivation via Analytic Signal
4.1. Forward-Time Spectral Projection
We define the analytic (positive-time) signal:

F (+)(r, t) =
∫ ∞

0
F̃ (r, ω) e−iωt dω

which also satisfies Eq. (1). We extract the carrier frequency at the fundamental
mode ω11:

ψ(r, t) = eiω11t F (+)(r, t) (3)

Here, ψ represents the slowly varying envelope of the field.

4.2. Substitution and Exact Algebra
Insert the derivatives of ψ into Eq. (1) and divide by e−iω11t:

∇2ψ − 1
c2 ∂

2
t ψ + 2iω11

c2 ∂tψ + ω2
11
c2 ψ = 0 (4)

Because ω11 = ck11, the term ω2
11

c2 ψ cancels with the spatial Laplacian contribu-
tion k2

11ψ, leaving an exact equation with a first-order time derivative.

4.3. Bandwidth Control
Rearranging Eq. (4) yields:

i∂tψ = − c2

2ω11
∇2ψ + 1

2ω11c2 ∂
2
t ψ (5)

For a mode with root-mean-square spectral width ∆ω, the second derivative
term obeys:

∥∥∥∥ 1
2ω11c2 ∂

2
t ψ

∥∥∥∥ ≤ ∆ω2

2ω11c2 ∥ψ∥ = O(ϵ2), ϵ = ∆ω
ω11

≪ 1 (6)

4.4. Emergent ℏ and m

We identify the emergent constants from the geometry of the fundamental mode:

ℏ = E11

ω11
, m = E11

c2 (7)
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Substituting these into the coefficient c2/(2ω11) gives ℏ/(2m). Discarding the
O(ϵ2) term yields the Schrödinger Equation:

iℏ ∂tψ = − ℏ2

2m∇2ψ +O(ϵ2) (8)

5. Equivalent Derivations
The robustness of this result is confirmed via three alternative routes: 1. Oper-
ator Factorization: Factoring the wave operator and expanding about ω11. 2.
Multiple-Scale Expansion: Introducing slow time T = ϵt; matching orders
reproduces Eq. (8). 3. Poynting Vector Averaging: Narrow-band averaging
of the energy flow yields the probability current.

All routes rely on the same bandwidth parameter ϵ and yield identical definitions
for ℏ and m.

6. Discussion
• Rigor: Only the controlled O(ϵ2) term is dropped. This term represents

the “Causal History” or high-frequency carrier information lost in the
Schrödinger approximation.

• Emergent Constants: ℏ and m are not arbitrary; they arise from the
energy and geometry of a single classical mode.

• Testable Corrections: Deviations from Schrödinger dynamics scale as ϵ2
and are potentially measurable in high-Q cavities with tunable bandwidth.

7. Conclusion
A doubly periodic electromagnetic mode, governed solely by Maxwell’s vacuum
equations, contains the Schrödinger dynamics of a quantum object once its
narrow-band envelope is isolated. Classical electrodynamics therefore supplies
the formal and numerical content usually attributed to quantum postulates.

7.0.1. Appendix A: Carrier Extraction and Degeneracy

Carrier Extraction

The process of “extracting the carrier” is formally equivalent to demodulation.

• Frequency Domain: The positive spectrum is shifted left by ω11; the
peak now sits at ω = 0.

• Time Domain: The fast factor e−iω11t is removed; ψ is the slowly varying
envelope.
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• Condition: The Schrödinger limit is valid strictly when ∆ω/ω11 ≪ 1.

7.0.1.1. Degeneracy at Level E1 = E0/4

• Geometric Modes: 4 states (integer pairs satisfying n2
1 + n2

2 = 4).
• Chirality: 2 states (Positive vs Negative carrier, F (+)/F (−)).
• Total: 4 × 2 = 8 states. Projecting onto F (+) alone leaves the usual
n2 = 4 degeneracy; keeping both analytic branches doubles it, accounting
for spin-like multiplicity.
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